

Sunderland City Council Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

Date May 2016

Local Authority Officer	Joanne Dodson
Department	Public Protection & Regulatory Services
Address	Jack Crawford House, Sunderland
Telephone	0191 561 1696
E-mail	Public.health@sunderland.gov.uk
Report Reference number	ASR 2016
Date	MAY 2016

Executive Summary: Air Quality in Our Area

Headlines

We are pleased to be able to report that the Air Quality in Sunderland is good. Health based objectives known as the Air Quality Objectives are being met across the City and we have seen a general decline in some of the pollutants measured. We have not declared any Air Quality Management Areas in our City.

However, Sunderland City Council is committed to try to reduce levels further and to support initiatives that will improve air quality and well-being in Sunderland. We are continuing to monitor the levels of air quality and if you are interested in reading about this in more detail please turn to Appendix A of this report which contains a summary of air quality data collected in 2015. We also look at new sources such as new roads or industrial sites to assess their impact on the City's air quality. Our real time monitoring data as well as data from other sites across the region can be accessed by going to http://www.airqualityengland.co.uk/local-authority/?la_id=348

Together with our partners in Transport and Public Health we aim to work together to try to improve air quality and there are ways that Sunderland's residents and businesses can get involved.

How you can get involved in Air Quality

There are ways in which we can all make small changes in our daily lives that will benefit the air quality in Sunderland. Things like walking instead of taking your car for short distances, car-sharing to get to work and driving carefully can all make a difference.

Sunderland City Council is part of the Department for Transport funded 'Go Smarter' sustainable transport programme launched three years ago, to promote more environmentally friendly ways of travelling than over-reliance on the car.

The Go Smarter to Work team at Sunderland City Council works with local businesses and employees to provide the practical help, advice and encouragement needed to walk, cycle or use public transport of car share for the journey to work.

Sunderland residents and businesses can get more information by visiting http://gosmarter.co.uk/ where you can:

- Plan your journey using public transport, walking or cycling
- Get advice on smarter ways to travel to work
- Get information for parents and pupils travelling to school.

Businesses can benefit too. Making smarter travel choices in your business can have vast benefits for your employees and your business.

Did you know?

- Urban congestion costs the economy £11bn per year, with the British
 Chambers of Commerce estimating that the annual cost of congestion was
 £17,350 per business in 2008. The cost of lost employee time is £331 per
 commuter per year, while holdups to business and freight vehicles total £1.1
 billion annually.
- Putting measures in place, to help you employees travel to work more sustainably, can contribute towards Corporate Social Responsibility targets particularly those related to the environment, sustainability and health & wellbeing.
- Encouraging your employees to be more active can have real benefits for your business. People who are physically active for 20 minutes a day take less than half the sick leave of those who are active for 10 minutes; this can equate to significant savings in terms of productivity and lost time.

Sunderland City Council were recently awarded a Gold Award by the GO Smarter campaign for their work and you can read about this in the Air Quality Initiatives section below.

Air Quality Initiatives

Here are a few examples of initiatives taking place in Sunderland.

On right roads to cleaner transport

In 2014, Sunderland City Council and Durham County Council lodged a successful joint bid to the Department for Transport's Clean Bus Technology Fund (CBTF), which was set up to support efforts across the country to reduce emissions from buses and improve air quality.

The money has been used to help bus operator Go North East refit 19 buses operating on routes between the two cities.

The routes are the 'Prince Bishops' buses which operate the 20, 20A and X20 routes between each city centre, and the X35 'Fast cats' which run between Sunderland and Hartlepool via Peterlee. Each of the 19 buses will now be refitted with the latest Selective Catalytic Reduction (SCRT) technology to reduce the exhaust emissions which contribute to air pollution.

Gold award for Sunderland.

In March 2016, Sunderland City Council received Gold accreditation for promoting the Go Smarter sustainable transport campaign.

Go Smarter Team with Cllr Michael Mordey.

Sunderland City Council is part of the Department for Transport funded 'Go Smarter' sustainable transport programme launched three years ago, to promote more environmentally friendly ways of travelling than over-reliance on the car.

Efforts in Sunderland have earned the City Council a Gold Accreditation award from the DfT campaign, which has been accepted on the city's behalf by Portfolio Holder for City Services, Councillor Michael Mordey.

"Getting people to consider these as viable and hopefully preferred travelling options is not easy. You have to provide the practical help, advice and resources to make that possible.

"We have listened to what local people and businesses have told us was needed, and tried to make that possible with things like improved cycle routes and changing facilities, designated walking routes and partnerships with public transport to offer reduces fares and improved services."

Cycling in the city

Improvements for cycling into and around Sunderland city centre are being proposed.

The proposals from the City Council come after it was awarded a £800,000 grant from the North East Combined Authority's Sustainable Transport Fund.

This fund helps schemes that encourage walking, cycling, using public transport, or car sharing.

Cycle routes to be added to existing roads and footways

Proposals include introducing more cycle lanes, shared spaces, and improvements to help encourage city centre cycling. In total, improvements to 4.3km or 2.6 miles of routes are proposed.

More than 800 consultation forms have been distributed to businesses and residents in and around the city centre.

Proposals include:

- Improvements for cycling in Park Lane, Olive and Derwent streets
- Improvements for cyclists along the north side of St Mary's Boulevard
- A new route through Borough Road, Laura, Murton and Tatham streets for cycling in Sunniside and Hendon
- An improved route for cycling into the city centre in Borough Road and Fawcett Street
- Improvements for cycling into the city centre along St Thomas Street
- Secure cycle parking, changing and storage facilities at St Mary's Multi-storey
 Car Park.

Progress of this scheme will be reported in 2017's Annual Status Report.

Air Quality in Sunderland City Council

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people,

and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas^{1,2}.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion³.

Pollutants can come from a variety of man-made sources such as industry, combustion of fuels, traffic engines and building heating. Some can come from natural sources such as the North Sea which adds to particulate levels. Air Quality in Sunderland is most heavily influenced by traffic emissions. The pollutant of most concern to Sunderland is Nitrogen Dioxide (NO₂) caused by road traffic.

Levels of pollution across Sunderland, indicated by the latest monitoring data, are falling and Sunderland has not had to declare an AQMA within its boundary

Sunderland City Council's Public Protection and Regulatory Services Team are responsible for overseeing the air quality monitoring network and reporting the data to DEFRA. We work together with other Local Authorities in our region as Air Pollution is trans boundary in nature. Many of the improvements to the road network or fitting buses with pollution reducing technology will have positive benefits in more than one local authority region in our area. The GoSmarter project mentioned earlier operates across all of the Tyne & Wear Authorities and Northumberland.

We also work closely with our partners in Transport, Public Health and Planning as well as partners outside the Local Authority such as the Environment Agency to improve air quality standards.

_

¹ Environmental equity, air quality, socioeconomic status and respiratory health, 2010

² Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

³ Defra. Abatement cost guidance for valuing changes in air quality, May 2013

Table of Contents

E	xecuti	ve S	Summary: Air Quality in Our Area	i
	Air Qu	ality	in Sunderland City Council	v
1	Lo	cal	Air Quality Management	1
2	Ac	tior	s to Improve Air Quality	2
	2.1	Air	Quality Management Areas	3
	2.2	Pr	ogress and Impact of Measures to address Air Quality in Sunderland City	
	Counc	il		3
	2.3		M _{2.5} – Local Authority Approach to Reducing Emissions and or	
	Conce	entra	ations	5
3	Air	Q۱	iality Monitoring Data and Comparison with Air Quality	
O			and National Compliance	8
	3.1		mmary of Monitoring Undertaken	
	3.1.		Automatic Monitoring Sites	
	3.1.	2	Non-Automatic Monitoring Sites	9
	3.2	Ind	lividual Pollutants	9
	3.2.	1	Nitrogen Dioxide (NO ₂)	9
	3.2.	2	Particulate Matter (PM ₁₀)	9
	3.2.	3	Particulate Matter (PM _{2.5})	9
Α	ppend	ix A	A: Monitoring Results	11
Α	ppend	ix E	8: Full Monthly Diffusion Tube Results for 2015	22
Α	ppend	ix (: Supporting Technical Information / Air Quality Monitoring	
D	ata Q <i>A</i>	VQ	S	25
Α	ppend	ix [D: Map(s) of Monitoring Locations	31
			E: Summary of Air Quality Objectives in England	
			f Terms	
_	. 	, ,		•

List of Tables

Table 2.1 – Declared Air Quality Management Areas.. **Error! Bookmark not defined.**Table 2.2 – Progress on Measures to Improve Air Quality**Error! Bookmark not defined.**

1 Local Air Quality Management

This report provides an overview of air quality in Sunderland during 2015 It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Sunderland to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

2 Actions to Improve Air Quality

Public Transport Improvements

This past year, Go North East (one of the main bus operators in Sunderland) has invested circa £10m in 100 new Euro 6 standard vehicles across the north east region to meet the particulates and emissions requirements, and to enable the withdrawal of a similar number of older Euro 2 vehicles. The vehicles are also fitted with the latest micro hybrid engine technology which recovers braking energy to power on board systems that would otherwise require power from the engine, thus reducing fuel consumption and improving emissions.

Low Emission Vehicles

There are approximately 4000 Ultra Low Emission Vehicles registered in the north east, with a large proportion in Sunderland. There is an established public charging point network which we are looking to improve and expand where necessary as part of a developing regional EV strategy.

Major Transport Schemes

The second phase of the Sunderland Strategic Transport Corridor is currently on site which comprises of a new bridge crossing over the River Wear. This project, while providing strategic links will also benefit air quality by diverting traffic from urban centre residential areas, which in turn will bring health and wellbeing benefits.

Go Smart projects

Funding provided by the Local Sustainable Transport Fund to deliver the Go Smarter to School and Work projects has now ended. Other funding opportunities are being explored to enable the continued delivery of our sustainable transport priorities.

Local Priorities and Challenges

Public Transport Improvements

Sunderland has been successful in securing £280,000 from the Department for Transport's latest round of Clean Bus Technology Fund to upgrade 14 buses on

urban routes. This project is to be delivered jointly with Gateshead and Go North East to upgrade 34 in total.

Low Emission Vehicles

Sunderland are a lead partner in the recent Go Ultra Low (GUL) City scheme and have received development funding to deliver a GUL Filling Station in Sunderland. This proposal is currently at the development and outline design stage.

Major Transport Schemes

The third phase of the Sunderland Strategic Transport Corridor linking the new Wear Crossing and the completed phase 1 in the City Centre is being progressed towards planning consent stage. This is one of a number a major transport projects under development which are aimed to meet a number of objectives including supporting economic development, as well as being environmentally beneficial by reducing traffic congestion at pinch points and bringing local air quality benefits and a reduction in noise levels.

Go Smart projects

The North East Combined Authority area which includes Sunderland is seeking transition funding to continue with elements of both the Go Smarter to School and Work initiatives for the remainder of 2016/17. An announcement of this funding bid is expected May 2016.

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

Sunderland City Council currently does not have any AQMAs.

2.2 Progress and Impact of Measures to address Air Quality in Sunderland City Council

Sunderland City Council has taken forward a number of general measures during the current reporting year of 2015 in pursuit of improving local air quality as reported in

the executive summary. We will evaluate the impact of such measures by continuing to monitor and report Air Quality levels across Sunderland.

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of PM_{2.5} (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that PM_{2.5} has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

Background on the impacts on health outcomes and rationale:

The people of Sunderland have lower life expectancy at birth than the England average, with a gap of 2.2 years for males and 2.4 years for females. Data published this week shows that:

- 17.1% of the gap for males and 24.1% of the gap for females is due to deaths from respiratory diseases;
- 13.4% of the gap for males and 16.2% of the gap for females is due to deaths from circulatory diseases;
- 28.1% of the gap for males and 34.3% of the gap for females is due to deaths from cancer.

Evidence shows that long term exposure to poor air quality increases the risk of mortality from cardiovascular and respiratory diseases and also lung cancer. Sunderland has higher than England average rates of death for these causes as follows:

- Premature (under 75 years) mortality rates from cardiovascular disease of 93 per 100,000 compared to 76 per 100,000 for England; of this 62 per 100,000 were preventable.
- Premature (under 75 years) mortality rates from respiratory disease of 44 per 100,000 compared to 33 per 100,000 for England; of this 28 per 100,000 were preventable.

 Premature (under 75 years) mortality rates from lung cancer of 50 per 100,000 compared to 34 per 100,000 for England; around 89% of lung cancers are preventable.

Data from the Public Health Outcomes Framework suggests that man-made small particulate air pollution (PM_{2.5}) contributes to deaths in the City and the burden this create on our population is equivalent to 4.5% of all deaths at ages 30 years and over. This places Sunderland is the best performing quartile for this measure.

Levels of PM_{2.5} in Sunderland (as measured by the Silksworth monitoring station) are generally relatively low and in line with the national trend are generally reducing. Data for 2015, at $7\mu g/m^3$ are well below the EU target of $25\mu g/m^3$; however it should be noted that there is no completely safe level of exposure.

Actions already being taken by Sunderland City Council to reduce pollutants such as PM₁₀ and NO_x as reported in the executive summary will also reduce levels of PM_{2.5} emissions.

Examples of measures to tackle PM_{2.5} can be categorised into Mobile Sources, Stationary Sources and Area Sources.

Mobile Sources

Sunderland Council has recently secured funding for the retrofitting of diesel buses which will help to reduce primary and secondary sources of PM2.5.

Stationary Sources

Stationary sources of PM_{2.5} can originate from industrial processes that use dusty raw materials and equipment such as electrostatic precipitators. The Environmental Health Team of Sunderland Council closely monitors dusty emissions from permitted processes and respond to any complaints regarding dust emissions from demolition and/or construction sites. We also control dust through the planning process by ensuring construction sites have a Construction Environmental Management Plan in place.

Area Source Measures

The whole of Sunderland City Council's boundary is a smoke control area and domestic coal is not permitted to be used as fuel. The Environmental Team

investigates complaints of dark smoke or the use of unapproved appliances to minimise the emissions of PM_{2.5} from these sources.

Sunderland City Council's Public Health Team are happy to support Environmental Health in promoting the importance of air quality in contributing to key priorities for the city and recommend that any actions that can reduce levels of PM_{2.5} should be considered as part of the broad strategy to protect and promote the health of the Sunderland population.

As this is the first year that Sunderland City Council have reported PM_{2.5} data it is thought that further discussions between our partners in Public Health and Transport are required to improve our understanding. Sunderland City Council will work towards reducing emissions and concentrations of PM_{2.5} in their area as practicable.

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives.

Sunderland City Council undertook automatic (continuous) monitoring at 3 sites during 2015. Table A.1 in Appendix A shows the details of the sites. Sunderland's monitoring results are available at http://www.airqualityengland.co.uk/local-authority/?la_id=348. National monitoring results are available at https://uk-air.defra.gov.uk/.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

3.1.2 Non-Automatic Monitoring Sites

Sunderland City Council undertook non- automatic (passive) monitoring of NO₂ at 37 sites during 2015. Table A.2 in Appendix A shows the details of the sites.

Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for "annualisation" and bias. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Table A.3 in Appendix A compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past 5 years with the air quality objective of 40µg/m³.

For diffusion tubes, the full 2015 dataset of monthly mean values is provided in Appendix B.

Table A.4 in Appendix A compares the ratified continuous monitored NO_2 hourly mean concentrations for the past 5 years with the air quality objective of $200\mu g/m^3$, not to be exceeded more than 18 times per year. The data shows that there were no exceedences of the NO_2 Air Quality Objectives in 2015.

3.2.2 Particulate Matter (PM₁₀)

Table A.5 in Appendix A compares the ratified and adjusted monitored PM₁₀ annual mean concentrations for the past 5 years with the air quality objective of 40µg/m³.

Table A.6 in Appendix A compares the ratified continuous monitored PM₁₀ daily mean concentrations for the past 5 years with the air quality objective of 50μg/m³, not to be exceeded more than 35 times per year.

The data shows that PM₁₀ Air Quality Objectives were met at all locations in 2015.

3.2.3 Particulate Matter (PM_{2.5})

Table A.7 in Appendix A presents the ratified and adjusted monitored PM_{2.5} annual mean concentrations for the past 5 years.

Although there is no regulatory standard applied to the PM2.5 role in England, there is an annual EU limit of $25\mu g/m^3$ to be met by 2020 which we can compare the levels in Sunderland against. The monitoring site in Silksworth has monitored PM_{2.5} for several years and levels are well below the EU limit.

Appendix A: Monitoring Results

Table A.1 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Monitoring Technique	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m)	Inlet Height (m)
CM1	Trimdon Street	Kerbside	438928	557151	NO ₂ ; PM ₁₀	N	Chemiluminescent; TEOM	3	0.5	2.0
CM2	Silks- worth	Urban background	438116	554462	NO _{2;} PM _{10,} PM _{2.5}	N	Chemiluminescent TEOM, FDMS	230	0.5	2.0
СМЗ	Dunn House	Roadside	439661	557921	NO ₂	N	Chemiluminescent	1	4.5	1.5

⁽¹⁾ Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

⁽²⁾ N/A if not applicable.

Table A.2 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutant s Monitore d	In AQMA ?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
29	Arndale House, St Mary's Way	Roadside	X439508	Y557151	NO ₂	Ν	100	0	N	4
38	17 Parkside South	Roadside	X435714	Y552473	NO ₂	N	0	18	N	2
39	15 John Street	Urban Centre	X439835	Y556978	NO ₂	N	115	6	N	2
53	166 Chester Road	Roadside	X438568	Y556566	NO ₂	N	0	4	N	2
55	25 Eden Vale	Roadside	X438690	Y556135	NO ₂	N	0	3	N	2
56	101 Southwick Road	Roadside	X439101	Y553282	NO ₂	Ν	0	2	N	4
57	5/6 Nbridge Street	Kerbside	X439664	Y557829	NO ₂	N	0	2	N	4
58	6 Beatrice Tce, Shiney Row	Kerbside	X432634	Y552616	NO ₂	N	0	3	N	2
86	2 Alice Street	Roadside	X439466	Y556484	NO ₂	N	0	4	N	2

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutant s Monitore d	In AQMA ?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
88	Hinds Street	Roadside	X439160	Y556995	NO ₂	N	145	1	N	4
94	Chaplin's PH, Mary St.	Kerbside	X439423	Y556738	NO ₂	N	0	2	N	4
100	Trimdon St AQ Station	Kerbside	X438927	Y557151	NO ₂	Ν	3	4	Y	2
101	Silksworth AQ Station	Urban Background	X438116	Y554462	NO ₂	N	130	3	Y	2
103	Trimdon St AQ Station	Kerbside	X438927	Y557151	NO ₂	N	3	4	Y	2
104	Trimdon St AQ Station	Kerbside	X438927	Y557151	NO ₂	N	3	4	Y	2
105	Silksworth AQ Station	Urban Background	X438116	Y554462	NO ₂	N	130	3	Y	2
106	Silksworth AQ Station	Urban Background	X438116	Y554462	NO ₂	N	130	3	Y	2
109	23 Newcastl e Rd	Roadside	X439648	Y558120	NO ₂	N	0	3	N	2
111	237 Queen Alex Rd,	Roadside	X438453	Y555507	NO ₂	N	0	9	N	2

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutant s Monitore d	In AQMA ?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
113	181 Durham Road	Urban Centre	X437446	Y554989	NO ₂	Ν	20	4	N	4
116	9 Derwent St	Roadside	X439451	Y556718	NO ₂	N	0	2	N	4
117	3 Holmesid e	Roadside	X439495	Y556795	NO ₂	N	97	4	N	4
118	27 Bridge St	Roadside	X439696	Y557205	NO ₂	N	0	2	N	4
119	Athenaeu m St	Roadside	X439792	Y556921	NO ₂	N	88	2	N	4
120	Gillespie's PH	Roadside	X439806	Y557063	NO ₂	N	100	5	N	4
121	Windsor Tce, Grngetwn	Roadside	X440702	Y554722	NO ₂	N	0	2	N	4
123	263 Chester Rd	Roadside	X437943	Y556341	NO ₂	N	10	4	N	2
125	Station Rd	Roadside	X435417	Y547025	NO ₂	N	0	2	N	2
128	Echo Building	Roadside	X439707	Y557312	NO ₂	N	20	2	N	4

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutant s Monitore d	In AQMA ?	Distance to Relevant Exposure (m) (1)	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
129	West Sunniside	Roadside	X439938	Y557089	NO ₂	N	2	1	N	4
130	St Mary's Car Park	Roadside	X439538	Y557292	NO ₂	N	177	3	N	4
131	Chaplin's PH 2 nd Tube	Kerbside	X439397	Y556666	NO ₂	N	3	1	N	3
132	Dunn House, N Bridge St.	Kerbside	X439661	Y557901	NO ₂	N	0.5	3	N	4
133	Northern Way	Roadside	X438153	Y558344	NO ₂	N	0	3	N	4
134	Southwick Rd	Roadside	X438563	Y558517	NO ₂	N	0	2	N	4
135	Merle Terrace	Roadside	X437561	Y557538	NO ₂	N	0	4	N	2
136	Morningsi de Rickleton	Roadside	X428269	Y553809	NO ₂	N	0	9	N	2

⁽¹⁾ Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

LAQM Annual Status Report 2015

⁽²⁾ N/A if not applicable.

Table A.3 – Annual Mean NO₂ Monitoring Results

			Valid Data Capture for	Valid Data	NO ₂ A	nnual Mear	n Concentr	ation (µg/n	n³) ⁽³⁾
Site ID	Site Type	Monitoring Type	Monitoring Period (%) (1)	Capture 2015 (%) ⁽²⁾	2011	2012	2013	2014	2015
CM1	Kerbside	Automatic	87.5	33	36.4	35.3	33.5	38.9	34.2
CM2	Urban background	Automatic	N/A	78	16	18	16	16	14
CM3	Roadside	Automatic	99.7	25	N/A	N/A	N/A	34.7	36
29	Roadside	Diffusion Tube		33	28.3	34.9	28.0	23.6	18.6
38	Roadside	Diffusion Tube		92	28.5	32.4	31.0	28.9	28.9
39	Urban Centre	Diffusion Tube		83	26.6	25.5	23.8	22.2	20.2
53	Roadside	Diffusion Tube		83	28.3	33.3	32.3	27.1	28.1
55	Roadside	Diffusion Tube		92	32.7	37.8	33.3	30.6	30.1
56	Roadside	Diffusion Tube		75	26.7	32.4	28.7	25.8	22.1
57	Kerbside	Diffusion Tube		83	33.7	36.8	34.6	35.4	29.0
58	Kerbside	Diffusion Tube		92	33.7	35.8	32.8	32.7	32.4
86	Roadside	Diffusion Tube		83	20.4	22.9	21.3	20.7	18.0
88	Roadside	Diffusion Tube		42	30.7	34.4	36.8	28.3	27.7
94	Kerbside	Diffusion Tube		58	35.5	37.8	37.0	35.1	31.7
100	Kerbside	Diffusion Tube		92	37.8	40.8	40.0	36.9	33.4
101	Urban Background	Diffusion Tube		92	18.19	18.8	40.2	16.7	34.0
103	Kerbside	Diffusion Tube		83	36.9	40.0	39.0	37.2	34.2
104	Kerbside	Diffusion Tube		92	37.4	40.1	16.7	37.1	15.0
105	Urban Background	Diffusion Tube		92	17.7	19.1	16.3	16.2	14.7
106	Urban Background	Diffusion Tube		75	16.3	18.9	16.0	15.3	14.5
109	Roadside	Diffusion Tube		67	15.3	34.4	29.1	32.3	31.7

			Valid Data	Valid Data	NO ₂ A	nnual Mear	n Concentra	ation (µg/n	n ³) ⁽³⁾
Site ID	Site Type	Monitoring Type	Capture for Monitoring Period (%) ⁽¹⁾	Capture 2015 (%) (2)	2011	2012	2013	2014	2015
111	Roadside	Diffusion Tube		92	19.7	23.7	21.8	19.3	18.1
113	Roadside	Diffusion Tube		83	29.4	33.2	29.5	27.0	26.3
116	Urban Centre	Diffusion Tube		92	26.3	27.7	26.6	25.9	22.6
117	Roadside	Diffusion Tube		83	33.3	41.1	35.8	35.7	33.9
118	Roadside	Diffusion Tube		92	29.9	30.4	26.4	24.0	24.2
119	Roadside	Diffusion Tube		92	32.0	33.5	30.3	26.1	26.6
120	Roadside	Diffusion Tube		67	30.7	30.0	25.9	29.9	22.1
121	Roadside	Diffusion Tube		92	25.1	21.4	28.3	26.2	25.3
123	Roadside	Diffusion Tube		92	34.3	39.4	35.0	35.6	34.0
125	Roadside	Diffusion Tube		75	26.4	29.5	26.7	25.8	22.5
128	Roadside	Diffusion Tube		75	36.1	32.2	31.2	30.8	28.3
129	Roadside	Diffusion Tube		92	24.4	27.1	22.2	20.2	21.1
130	Roadside	Diffusion Tube		75	26.4	27.9	25.3	24.0	21.4
131	Kerbside	Diffusion Tube		58	40.8	39.3	35.4	33.0	31.5
132	Kerbside	Diffusion Tube		67	42.2	46.2	46.0	39.1	36.2
133	Roadside	Diffusion Tube		92	32.9	32.2	31.5	31.3	28.9
134	Roadside	Diffusion Tube		67	32.8	35.2	31.9	30.3	28.3
135	Roadside	Diffusion Tube		67	22.2	25.1	25.9	24.1	20.7
136	Roadside	Diffusion Tube		92	21.7	24.7	24.8	21.9	21.0

Notes: Exceedences of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**.

 NO_2 annual means exceeding $60\mu g/m^3$, indicating a potential exceedance of the NO_2 1-hour mean objective are shown in **bold and underlined**.

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Table A.4 – 1-Hour Mean NO₂ Monitoring Results

		Monitoring	Valid Data Capture for	Valid Data		NO ₂ 1-Hour Means > 200μg/m ^{3 (3)}					
Site ID	Site Type	Туре	Monitoring Period (%) (1)	Capture 2015 (%) (2)	2011	2012	2013	2014	2015		
CM 1	Kerbside	Automatic	87.5	33	0	0	0	0	0(92)		
CM2	Urban Background	Automatic	N/A	78	0	0(80)	0(80)	0(76)	0(67)		
CM3	Roadside	Automatic	99.7	25	N/A	N/A	N/A	0	0		

Notes: Exceedances of the NO₂ 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times/year) are shown in **bold**.

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 90%, the 99.8th percentile of 1-hour means is provided in brackets.

Table A.5 – Annual Mean PM₁₀ Monitoring Results

Sito ID	Site Type	Valid Data Capture for Monitoring	Valid Data Capture 2015	PM ₁₀ Annual Mean Concentration (μg/m³) ⁽³⁾						
Site ID	Site Type	Period (%) ⁽¹⁾	(%) ⁽²⁾	2011	2012	2013	2014	2015		
CM1	Kerbside	91.7	45.9	20	22.1	21.6	21.3	20.9		
CM2	Urban Background	98.4	44.7	15	15.6	15.3	13.9	14.6		

Notes: Exceedances of the PM₁₀ annual mean objective of 40µg/m³ are shown in **bold**.

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Table A.6 – 24-Hour Mean PM₁₀ Monitoring Results

Site ID	Site Type	Valid Data Capture for	Valid Data Capture 2015 (%) (2)	PM ₁₀ 24-Hour Means > 50μg/m ^{3 (3)}					
Site ib		(1)		2011	2012	2013	2014	2015	
CM1	Roadside	91.7	45.9	16	10	3	6	1	
CM2	Urban Background	98.4	44.7	0	0	3	2	1	

Notes: Exceedances of the PM₁₀ 24-hour mean objective (50µg/m³ not to be exceeded more than 35 times/year) are shown in **bold.**

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) If the period of valid data is less than 90%, the 90.4th percentile of 24-hour means is provided in brackets.

Table A.7 – PM_{2.5} Monitoring Results

Site ID	Site Type	Valid Data Capture for Monitoring	Valid Data Capture 2015	PM _{2.5} Annual Mean Concentration (μg/m³) ⁽³⁾						
Site ID	Site Type	Period (%) ⁽¹⁾	(%) ⁽²⁾	2011	2012	2013	2014	2015		
CM2	Urban Background	N/A	95	15	10	9	10	7		

- (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) All means have been "annualised" as per Technical Guidance LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Appendix B: Full Monthly Diffusion Tube Results for 2015

Table B.1 – NO₂ Monthly Diffusion Tube Results - 2015

	NO ₂ Mean Concentrations (μg/m³)													
													Annu	al Mean
Site ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted
29					19.1	17.69	17.51		27.53				20.5	18.6
38	30.94	37.04	30.88	35.88	28.06	26.30	25.54	27.35	38.42		35.27	34.07	31.8	28.9
39	26.39	24.39	21.65	21.55	17.31	17.87	20.13	20.58			25.82	25.82	22.2	20.2
53	34.04	30.56	30.32	30.04	22.95	24.54	24.10	23.97	34.45		53.82		30.9	28.1
55	39.77	32.82	33.34	30.72	24.26	27.74	29.37	29.05	36.17		39.51	40.72	33.0	30.1
56	27.07	28.62	23.42	25.25	12.15		19.63	19.76	30.31		32.45		24.3	22.1
57	28.83	29.42		35.03	30.15	28.46	32.30	26.27	41.13		40.75	26.43	31.9	29.0
58	38.86	39.51	37.41	37.50	29.06	30.83	32.43	24.01	43.92		41.64	36.93	35.6	32.4
86	24.12	23.87	21.70	25.06	13.75	16.48	15.03	14.81	23.15			19.50	19.7	18.0
88	43.90	31.90	25.31	29.11	22.19								30.5	27.7
94		36.89		38.05	24.25	27.88	35.53	34.18	47.18				34.9	31.7
100	34.55	41.49	30.98	43.11	30.58	31.74	36.54	31.85	45.64		38.85	38.26	36.7	33.4
103	31.63	42.98	34.52	40.14	28.62	33.95	34.94	31.57	47.30		43.55	41.28	37.3	34.0
104	38.25	38.31	34.98	36.70	29.24	30.98	34.97	32.35	44.96		54.81		37.6	34.2
101	16.27	20.32	17.96	15.62	10.37	11.69	14.32	12.18	19.08		21.95	21.48	16.5	15.0
105	16.27	20.07	19.15	15.82	11.26	12.05	12.80	12.65	18.24		21.72	17.38	16.1	14.7
106		20.15	16.27	17.23	11.23	11.87	13.02	12.76	18.32		22.32		15.9	14.5
109		37.94	37.81		31.35		31.04	31.21	38.66		39.56	31.41	34.9	31.7
111	22.55	22.30	22.98	21.05	14.61	15.61	16.05	16.32	22.65		25.46	19.06	19.9	18.1
113	37.24	29.69	30.71	30.40	21.93	22.60	25.09	24.82	35.55		30.71		28.9	26.3

		NO ₂ Mean Concentrations (μg/m³)												
0:4.15													Annual Mean	
Site ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted
116	33.81	29.01	28.01	26.88	21.9	21.59	21.98	20.67	33.20		32.25	4.41	24.9	22.6
117	39.88	37.92	39.32	38.26	30.83	29.41	36.98	33.14	46.07		40.88		37.3	33.9
118	32.56	29.84	29.10	26.89	20.51	22.78	22.54	22.28	28.95		29.87	27.52	26.6	24.2
119	34.75	34.70	27.67	27.51	25.15	23.91	23.25	25.94	34.76		33.91	30.41	29.3	26.6
120		29.36		24.91	18.74	19.98	21.64	22.41	32.51		24.33		24.2	22.1
121	31.46	33.56	29.03	27.65	21.28	23.39	24.73	25.93	33.52		31.52	24.13	27.8	25.3
123	41.75	38.61	34.25	38.28	15.46	34.89	37.64	29.52	47.03		44.61	48.99	37.4	34.0
125		28.00	28.32	29.17	17.14	23.37	22.85	19.96	31.31			22.72	24.8	22.5
128	33.06	41.97	31.96	32.07	25.21	24.63	26.56	25.75	38.47				31.1	28.3
129	33.69	27.81	24.29	23.74	16.76	16.80	15.54	17.18	26.15		26.67	25.84	23.1	21.1
130		27.85	23.47	25.52	16.36	15.59	17.67	18.77	28.63		37.87		23.5	21.4
131		38.94		35.97		28.04	30.86	27.88	43.88		36.48		34.6	31.5
132		48.96		38.44	34.53	33.90	34.13	33.81	46.49		47.70		39.7	36.2
133	35.02	35.05	28.71	28.41	26.01	26.30	30.38	26.91	39.77		41.61	31.68	31.8	28.9
134	30.86	32.13	31.00	34.68	24.21		29.95	24.45			41.82		31.1	28.3
135		24.60	23.71	22.53	29.74	18.88	18.42	17.07	26.93				22.7	20.7
136	27.53	30.92	25.56	22.38	20.28	19.12	17.64	18.83	22.67		26.88	21.82	23.1	21.0

⁽¹⁾ See Appendix C for details on bias adjustment

LAQM Annual Status Report 2015

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

New or Significant Changes to Sources of Pollution

Sunderland City Council continues to assess new sources of pollution and since the last report there have been two new industrial processes that have required an Environmental Permit (details in Table C1 below).. These installations have applied for and received a permit to operate from Sunderland City Council under the Environmental Permitting Regulations 2010. Sunderland City Council has deemed their applications duly made and they are now subject to the inspection regime of LA-IPPC or LA-PPC as applicable. The permit conditions for both installations ensure that emissions to air are compliant with Process Guidance notes for the relevant industry sector.

The impact on local air quality was assessed using the TG (16) guidance and it was concluded that with suitable controls and site management that these new sources are unlikely to make a significant impact on local air quality.

Table C1

Name of Installation	Address	Type of Industry	Potential Pollutant Releases	Part A/B
Grab & Deliver	Freezemoor Rd, New Herrington, DH4 7BH.	Mobile Crusher	NO _x and PM ₁₀	В
Sci-Grip	Bentall Business Park, Washington, NE37 3JD.	Manufacture of Adhesive Products	VOC's	В

Details of Dun House Monitoring Programme to determine whether an AQMA needs to be declared.

Previously, diffusion tube monitoring of Nitrogen Dioxide indicated that the Air Quality Objective for Nitrogen Dioxide was at risk of being breached at a location near to the Wheatsheaf Gyratory junction (Tube ID 132). Monitoring has been focused on the residents of Dunn House as a sensitive receptor.

Diffusion tube monitoring was followed up by a more detailed assessment using a real time automatic analyser and monitoring was carried out for 5 months during 2014 followed by a further 3 months in March to May 2015. Monitoring was carried out in two separate periods as data collection had to be suspended in 2014 due to contractual issues with our Equipment Support Unit and data management provider. It was considered that further monitoring was required to provide a robust assessment and hence a further three months was carried out in 2015. Sunderland City Council had been working towards producing the data in a Detailed Assessment however; due to the change in format of the Local Air Quality Management Reporting system it seemed more appropriate to report the results here within this report.

The data for the two separate monitoring periods was annualised according to the method described in LAQM (TG16) and is presented in Table A.8 – Annual Mean NO₂ Monitoring Results.

The results were an annual average of approx. 34.7µg/m³ in 2014 and approx. 36µg/m³ in 2015 which is comfortably below the annual objective of 40µg/m³. Sunderland City Council has concluded that we do not need to declare an AQMA for this location.

The latest Diffusion Tube results for 2015 for the same site have also fallen below the objective supporting this conclusion with an annual mean of $36.2 \,\mu\text{g/m}^3$. We will continue to monitor this location using diffusion tubes in the future.

New Roads Constructed or Proposed since the last round of review and assessment.

It was reported in the USA 2015 that Phase 3 of the Sunderland Strategic Transport Corridor (SSTC) was currently at the pre app stage of planning. It was hoped that an update regarding air quality assessments undertaken as part of the full planning application would have been able to be provided at this time. Unfortunately the planning process has not yet reached this stage and a further update will be given in 2017's Annual Statement Report.

QA/QC Data

Diffusion Tube Bias Adjustment Factors

Sunderland City Council diffusion tubes are supplied and analysed by Gradko International Ltd, Winchester, Hampshire. The preparation method used is 20% TEA and acetone.

The bias adjustment factor of 0.91 was obtained from the Spreadsheet version 03/16.

PM Monitoring Adjustment

 PM_{10} is monitored at two locations using TEOM instruments. The data has been adjusted using the volatile correction model (VCM) accessed at http://www.volatile-correction-model.info/.

Short-term to Long-term Data Adjustment

Some of the data collected during 2015 has had to be adjusted due to not having a full data set for the year. We were able to collect 3 months data, March to May for Dunn House and 4 months for Trimdon Street and Silksworth. I have chosen sites that are in the AURN network for this adjustment. The calculations are shown in the tables below.

Trimdon St (CM1) NO₂

Site	Site Type	Annual Mean	Period Mean	Ratio
Newcastle Centre	Urban Centre	29.4	30	0.98
Wessington Way S'land	Roadside	25	24.3	1.03
			Average	1.005

Trimdon St & Silksworth (CM1/2) PM₁₀

Thindon St & Sinsworth (SW172) T W10						
Site	Site Type	Annual Mean	Period Mean	Ratio		
Leeds Centre	Urban Centre	16	15.8	1.01		
Middlesborough	Urban Centre	17	15.8	1.08		
			Average	1.045		

Dunn House (CM3) NO₂

Site	Site Type	Annual Mean	Period Mean	Ratio
Newcastle Centre	Urban Centre	29.4	30.0	0.98
Wessington Way S'land	Roadside	25	24.3	1.03
			Average	1.005

QA/QC of Automatic Monitoring

The QA/QC procedures of Sunderland are based on the AURN Site Operator's manual along with training received from our original equipment suppliers, Casella Measurement.

The fundamental aims of a quality assurance/ control programme are:

- The data obtained from measurement systems should be representative of ambient concentrations existing in each area.
- Measurements must be accurate, precise and traceable.
- Data must be comparable and reproducible.
- Results must be consistent over time.

An appropriate level of data capture is required throughout the year.

Equipment Maintenance

- Automatic analysers are serviced every 6 months by a qualified engineer under a contract with SupportingU
- Local Authority staff visits the air quality sites at least once every 4 weeks during which a check of the equipment is made to ensure it is all working within normal parameters. Filters are also changed during this visit.
- If a problem occurs then a call-out is instigated to the service centre and an engineer will normally visit site within 48-hours to correct the fault.

Calibration

- Each day a calibration response check is undertaken by the logger, this check does not re-calibrate the instrument. The calibration system uses certified gas cylinders of a known concentration, to produce an expected response from the analyser.
- Calibration reports stored in the logger will retain expected zero and span gas responses and the actual measured zero and span gas responses.
- Computer software collects and stores these calibration reports and also calculates a zero correction and span response scaling factor which can be applied to the data if required.
- At the 6-month service the instruments are re-calibrated to the site cylinder certificated value.
- Gas cylinder pressures are regularly checked at routine visits to ensure they are replaced before they run out completely.

When a cylinder is replaced the new certified values are entered into the logger.

Data Validation

Data from all of Sunderland City Council's automatic monitoring sites are collected via modem by Ricardo-AEA who are under contract with Sunderland City Council to validate and ratify the data. Monthly reports of the data are produced by Ricardo - AEA and e-mailed to Sunderland City Council. The data is also displayed on a website that members of the public can freely access. The website address is http://www.airqualityengland.co.uk/site/graphing?site_id=SUN2

Ricardo-AEA review data daily to ensure that

- Telecommunications to the station are operational
- The air quality station is operational
- Individual analysers are operational
- Air quality exceedences are identified
- Operational information such as TEOM filter loading, does not invalidate data
- Obvious data errors are identified

Data Ratification

In addition to the initial data screening process (validation), data are further scrutinised in monthly blocks in order to provide a final ratified data set.

The software that collects the data is used to rescale the data using the factor calculated from the monthly calibration check. Data is then reviewed for erroneous data such as:

- Daily calibration spikes
- Routine or service visit errors
- Analyser faults
- Site faults, such as power outages

When data is satisfactory, it is compared to other local sites. This provides a check to ensure data is realistic.

QA/QC of diffusion tube monitoring

Gradko has full U.K.A.S. accreditation for compliance with ISO-IEC 17025 for laboratory management system. Its accuracy and consistency of analytical methods is regularly monitored using external proficiency schemes such as

- Workplace analysis scheme for proficiency (W.A.S.P.)
- Laboratory Environmental Analysis Proficiency (L.E.A.P.)

Although these have now been replaced with the Air PT scheme.

In addition regular cross-checks are carried out with other U.K.A.S. accredited labs using certified standard solutions.

Appendix D: Map(s) of Monitoring Locations

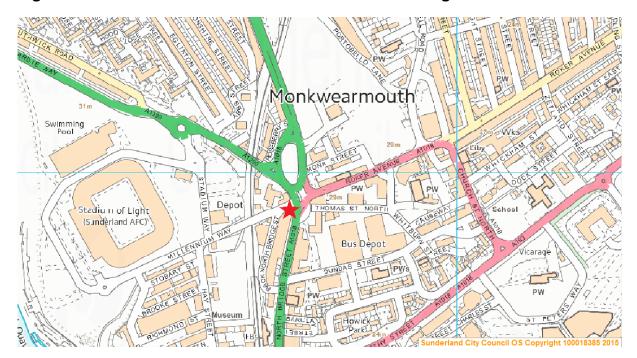

Figure D1 Location of Trimdon St Automatic Monitoring Station

Figure D2 Location of Silksworth (Puma Centre) Automatic Monitoring Station.

Figure D3 Location of Dunn House Automatic Monitoring Station.

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England

Pollutant	Air Quality Objective⁴					
Poliularit	Concentration	Measured as				
Nitrogen Dioxide	200 µg/m ³ not to be exceeded more than 18 times a year	1-hour mean				
(NO ₂)	40 μg/m ³	Annual mean				
Particulate Matter	50 μg/m³, not to be exceeded more than 35 times a year	24-hour mean				
(PM ₁₀)	40 μg/m ³	Annual mean				
	350 μg/m³, not to be exceeded more than 24 times a year	1-hour mean				
Sulphur Dioxide (SO ₂)	125 µg/m³, not to be exceeded more than 3 times a year	24-hour mean				
	266 µg/m³, not to be exceeded more than 35 times a year	15-minute mean				

 $^{^{4}}$ The units are in microgrammes of pollutant per cubic metre of air ($\mu g/m^{3}$).

Glossary of Terms

Abbreviation	Description
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives
ASR	Air quality Annual Status Report
Defra	Department for Environment, Food and Rural Affairs
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England
EU	European Union
FDMS	Filter Dynamics Measurement System
LAQM	Local Air Quality Management
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less
QA/QC	Quality Assurance and Quality Control
SO ₂	Sulphur Dioxide