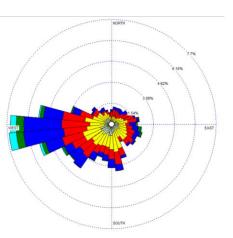
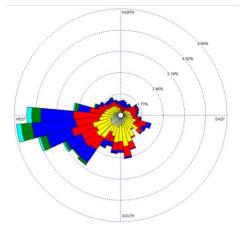


APPENDIX 6.3: METHODOLOGY FOR OPERATIONAL PHASE ASSESSMENT

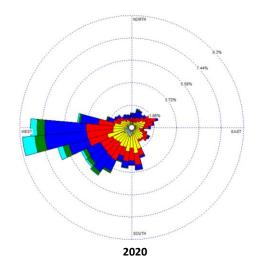
Atmospheric Dispersion Modelling

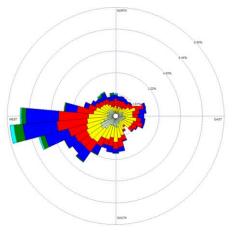

1.1 The atmospheric dispersion model AERMOD (Lakes Environmental, Version 11.2) has been used to assess the potential air quality impacts associated with the operation of the proposed battery manufacturing facility. This dispersion model is widely used and accepted for the purpose of undertaking assessments to support both planning and Environmental Permit applications.

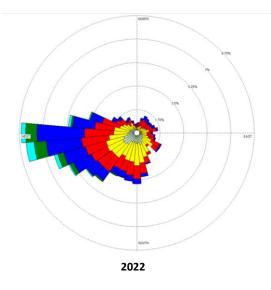

Meteorological Data

- 1.2 The meteorological data used in the air quality modelling has been obtained from ADM Limited and is from the Newcastle Airport recording station, covering the period between 1st January 2018 and 31st December 2022.
- 1.3 The site is located at an altitude of approximately 38m AOD. The Newcastle Airport recording station is located approximately 19km to the north west, at an altitude of approximately 81m AOD. This recording station is considered to be most representative of the conditions at the site.
- 1.4 The 2018 to 2022 wind roses for the Newcastle Airport meteorological recording station are shown in Figure 6.3/1. Each year has been run separately in the model.

Figure 6.3/1: 2018 to 2022 Wind Roses for Newcastle Airport Meteorological Station






2018

NT15611/ES/App 6.3 July 2023

Surface Characteristics

- 1.5 The predominant characteristics of land use in an area provides a measure of the vertical mixing and dilution that takes place in the atmosphere due to factors such as surface roughness and albedo.
- 1.6 The meteorological data has been processed using AERMET, the supporting meteorological pre-processing software (Lakes Environmental, Version 11.2), to enable the surface characteristics to be set in the model.
- 1.7 The values set within the model are included in Table 6.3/1.

Table 6.3/1: Surface Characteristics Included in Model							
Setting	Urban	Cultivated Land					
Albedo	0.2075	0.28					
Bowen ratio	1.625	0.75					
Surface roughness	1m	0.0725m					

- 1.8 Buildings can also have a significant influence on the behaviour of the local airflow and 'downwash' can occur, where an emission plume can be drawn down in the vicinity of buildings. There are a number of existing buildings near to the sources of the emissions, as well as the proposed buildings, and therefore building effects have been included within the model.
- 1.9 Further details of the buildings included in the model are provided later in this appendix.

Terrain

1.10 To consider the impact of terrain surrounding the Proposed Development, on the dispersion of pollutants, OS Terrain 5 data has been used in the model (in x.y.z format). This has been processed using the in-built AERMAP terrain processor.

Emission Parameters

- 1.11 A number of emission sources have been considered within the air dispersion model. These relate to different parts of the battery manufacturing process, and further information on the process is included in Chapter 6 of the Environmental Statement.
- 1.12 The forty-two sources considered within the assessment, and the pollutants considered for each source, are as follows:

- 6 No. stacks associated with the boilers.
- 21 No. stacks associated with N-Methyl-2-Pyrrolidone (NMP) emissions.
- 10 stacks associated with Ethyl Carbonate (EC) emissions.
- 5 stacks associated with Diethyl Carbonate Solvent Vapour (DEC) emissions.
- 1.13 Information regarding the flues for the sources has been provided by the client.

					т	able 6.3/2: I	Model Param	eters for Sou	irces Include	d in Model						
	Input in Model															
Parameter	Boiler Stack (1 of 6)	VOC 1- 7	VOC 8- 9	VOC 10	VOC 11	VOC 12-14	VOC 15	VOC 16-19	VOC 20-23	VOC 24-27	VOC 28	VOC 29	VOC 30	VOC 31	VOC 32	VOC 33-36
Flue	433167,	433148,	433165,	433105,	433105,	433380,	433327,	433196,	433198,	433209,	433116,	433147,	433148,	433149,	433162,	433243,
location	558781	558773	558780	558753	558753	558835	558721	558669	558664	558675	558655	558586	558586	558583	558555	558564
Base	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m	38.70m
elevation	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD	AOD
Exhaust height ^a	36m	33m	33m	33m	33m	19m	19m	33m	33m	33m	33m	33m	33m	33m	33m	33m
Exhaust diameter	0.45m	0.45m	0.45m	0.30m	0.41m	0.40m	0.45m	0.46m	0.45m	0.46m	0.30m	0.29m	0.29m	0.37m	0.26m	0.46m
	6660	10080	10080	4564	7560	8460	10432	11376	10080	11376	4082	4082	4082	6624	3358	11376
Exhaust gas	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr	Am³/hr
flow at exit	(1.850	(2.800	(2.800	(1.268	(2.100	(2.350	(2.898	(3.160	(2.800	(3.160	(1.134	(1.134	(1.134	(1.840	(0.933	(3.160
	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)	Am ³ /s)	Am³/s)	Am³/s)	Am³/s)	Am³/s)
Exhaust efflux velocity	12.00m/s	18.00 m/s	18.00 m/s	17.90 m/s	16.00 m/s	19.00 m/s	18.00 m/s	19.00 m/s	18.00 m/s	19.00 m/s	16.00 m/s	18.00 m/s	18.00 m/s	17.00 m/s	18.00 m/s	19.00 m/s
Exhaust gas exit temp.	128°C	25°C	20°C	20°C	20°C	20°C	20°C	25°C	25°C	20°C	20°C	20°C	20°C	25°C	25°C	25°C

1.14 The locations of the stacks included within the model are shown in Figure 6.3/2.

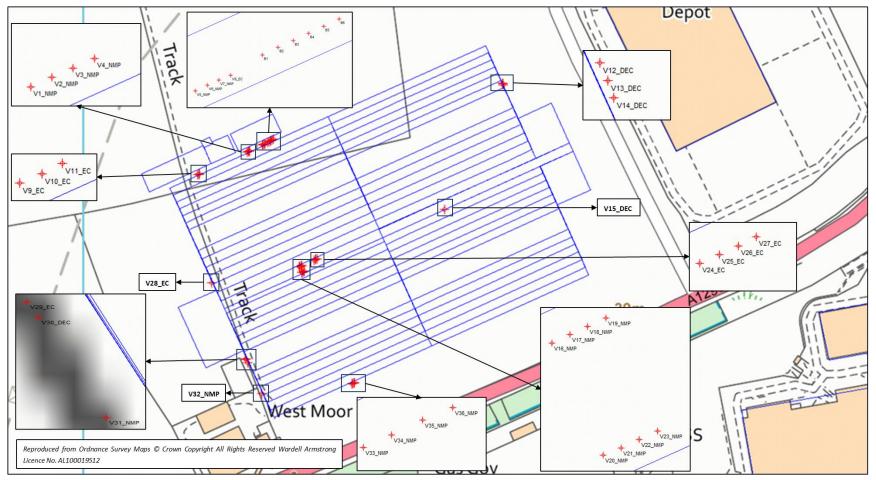


Figure 6.3/2: Location of Emission Sources in Model

1.15 The maximum emission concentrations for each substance, as provided by Envision, as well as the calculated emission rates are shown in Table 6.3/3 below.

					Table 6	.3/3: Emissi	on Rates for	Sources Incl	uded in Mo	del					
	Input in Model														
Emitted Substance	Boiler Stack (1 of 6)	VOC 1- 7	VOC 8- 9	VOC 10	VOC 11	VOC 12-14	VOC 15	VOC 16-19	VOC 20-23	VOC 24-27	VOC 28	VOC 29	VOC 30	VOC 31	VOC 32
	Emission Concentration (mg/Nm ³)														
NOx	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
со	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NMP		2	-	-	-	-	-	2	2	-	-	-	-	2	2
Ethyl Carbonate	-	-	15	15	15	-	-	-	-	15	15	15	-	-	-
DiEthyl Carbonate	-	-	-	-	-	20	20	-	-	-	-	-	20	-	-
		•	•				Emi	ssion Rate (g/s)	•	•		•	•	
NO _x	0.1067	-	-	-	-	-	-	-	-	-	-	-	-	-	-
со	0.0213	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NMP	-	0.0051	-	-	-	-	-	0.0058	0.0051	-	-	-	-	0.0034	0.0017
Ethyl Carbonate	-	-	0.0385	0.0177	0.0293	-	-	-	-	0.0434	0.0158	0.0158	-	-	-
DiEthyl Carbonate	-	-	-	-	-	0.0438	0.0540	-	-	-	-	-	0.0211	-	-

Treatment of Buildings

- 1.16 The proposed building for the battery manufacturing processes has been included within the model. The building has been split into different sections, to represent the different heights of each part of the building.
- 1.17 There are also a number of existing buildings located in the neighbouring industrial area to the south, and the buildings within Phase 1 of IAMP to the north east.
- 1.18 The buildings included within the model are detailed in Table 6.3/4.

Building Number	Building		Base	Height of	Grid Reference of SW Corner			
	Name in Model	Building Description	Elevation (m)	Building (m)	х	Y		
1 ^a	BLD_1	On-site Building 1	38.70	30.00	433078.96	558740.09		
2ª	BLD_2	On-site Building 2	38.70	30.00	433172.70	558533.07		
3ª	BLD_3	On-site Building 3	38.70	16.00	433267.77	558703.55		
4 ^a	BLD_4	On-site Building 4	38.70	16.00	433315.63	558597.67		
5	BLD_5	On-site Building 5	38.70	11.20	433271.10	558695.81		
6	BLD_6	On-site Building 6	38.70	16.00	433111.43	558578.35		
7	BLD_8	On-site Building 8	38.70	16.00	433429.07	558725.26		
8	BLD_9	On-site Building 9	38.70	16.00	433451.44	558705.23		
9	BLD_14	Off-site Building 1	38.79	12.00	433026.14	558095.42		
10	BLD_15	Off-site Building 2	40.50	12.00	433262.55	558264.52		
11	BLD_16	Off-site Building 3	35.18	15.00	433725.71	558146.97		
12	BLD_17	Off-site Building 4	36.54	25.00	433674.63	558585.11		
13	BLD_18	Off-site Building 5	35.96	19.00	433536.75	558773.64		
14	BLD_19	Off-site Building 6	35.67	15.00	433659.35	559063.87		
15	BLD_20	Off-site Building 7	36.05	15.00	433714.85	559264.98		
16	BLD_21	On-site building 10	38.70	11	433052.94	558753.20		
17	BLD_22	On-site building 11	38.70	17	433109.49	558776.92		
18	BLD_23	On-site building 12	38.70	22	433106.86	558782.50		
19	BLD_24	On-site building 12	38.70	14	433133.53	558789.49		

1.19 The locations of the on-Site buildings are shown in Figure 6.3/3, and the off-Site buildings are shown in Figure 6.3/4 below.

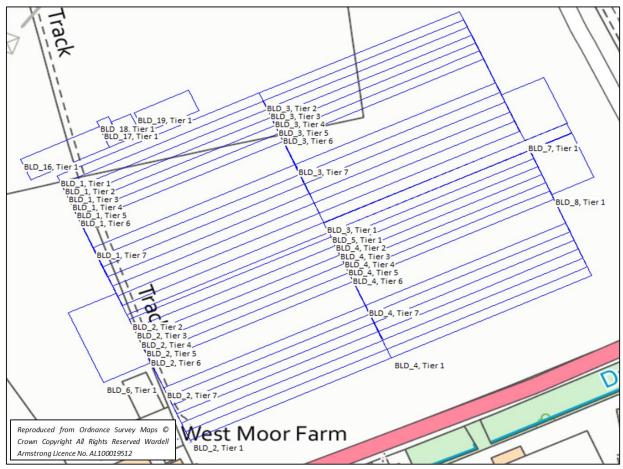


Figure 6.3/3: Location of On-site Buildings in Model

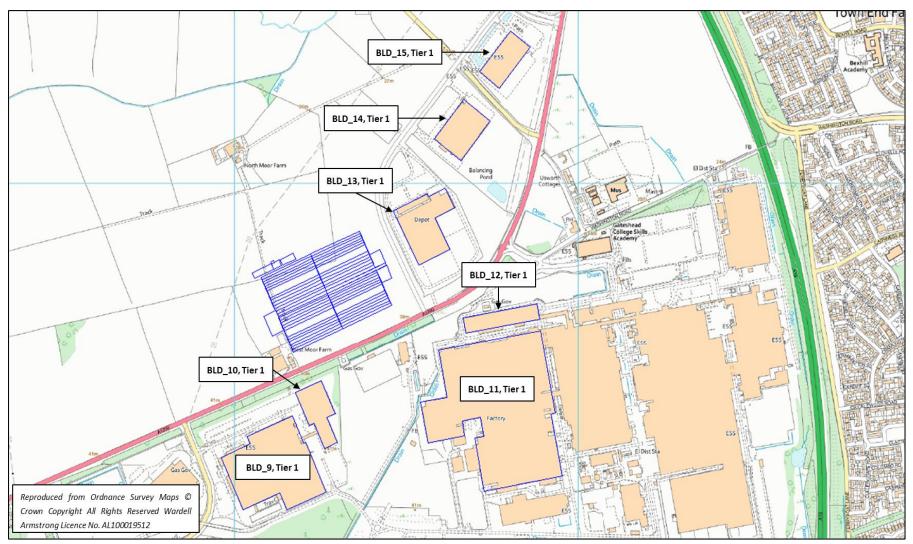


Figure 6.3/4: Location of Off-site Buildings in Model

ENVISION AESC IAMP One Phase Two Development Planning Application and Environmental Impact Assessment Appendix 6.3 Methodology for Operational Phase Assessment

